
Automatic Close Copy Speech Synthesis

Automatic Close Copy Speech Synthesis

Synteza mowy metodą automatycznego dokładnego
kopiowania

Jolanta Bachan

Adam Mickiewicz University, Institute of Linguistics

jolabachan@gmail.com

ABSTRACT

The aim of the present study is, first, to develop a restricted domain
speech synthesis concept for automatically generating acoustic stimuli
for use in evaluating cochlear implants for children and, second, to
implement a prototype synthesiser. The approach taken is to use Close
Copy Speech (CCS) synthesis whose task it to “repeat utterances
produced by a human speaker with a synthetic voice, while keeping the
original prosody” [1]. The paper concentrates on a sub-domain of CCS,
namely on Automatic Close Copy Speech (ACCS) synthesis, in which
the transfer of parameters from the original speech signal and annotation
is performed automatically. The design and implementation of ACCS is
presented.

STRESZCZENIE

Celem obecnego badania jest, po pierwsze, opracowanie konceptu
syntezy mowy z ograniczonej dziedziny dla automatycznego
generowania bodźców akustycznych na potrzeby oceny implantów
ślimakowych dla dzieci i, po drugie, implementacja prototypowego
syntezatora. Jako metodę przyjęto syntezę mowy metodą dokładnego
kopiowania (Close Copy Speech (CCS) synthesis), której zadaniem jest
„powtarzanie wypowiedzi produkowanych przez ludzkiego mówcę za
pomocą głosu syntetycznego, z zachowaniem oryginalnej prozodii” [1].
Artykuł ten koncentruje się na poddomenie CCS, a mianowicie na
syntezie mowy metodą automatycznego dokładnego kopiowania
(Automatic Close Copy Speech (ACCS) synthesis), w której
przeniesienie parametrów z oryginalnego sygnału mowy i anotacji
odbywa się automatycznie. W pracy zaprezentowany jest projekt i
implementacja ACCS.

1. Introduction
The aim of the present study is, first, to develop a restricted domain

speech synthesis concept for automatically generating acoustic stimuli for
use in evaluating cochlear implants for children and, second, to implement a
prototype synthesiser. The main motivation for including a speech

1

Speech and Language Technology. Volume 9

synthesiser in the system is to increase the flexibility of the available test
stimuli.

In the present form of the evaluation, tests of cochlear implants
recorded stimuli are used. But a recorded custom corpus of recordings is
static and inflexible. A possible solution is to use speech synthesis, which is
dynamic and flexible. Moreover, synthetic speech allows presentation of
carefully controlled speech-like stimuli to listeners in order to obtain
judgements on their speech perception. The approach taken is to use Close
Copy Speech (CCS) synthesis as a best case example of synthetic speech.

2. Close Copy Speech (CCS) synthesis
Close Copy Speech (CCS) synthesis or resynthesis method “repeats

utterances produced by a human speaker with a synthetic voice, while
keeping the original prosody” [1]. In this method, "close copy" means that
the synthetic speech is as similar as possible to a human utterance.

In the present study, the definition by Dutoit is interpreted to mean that
the Natural Language Processing or Text-To-Speech (TTS) component of
the synthesiser is replaced by an analysis of a recorded speech signal. In the
present context, "copy" therefore means that the input to the synthesis engine
for a given utterance is derived directly from a corresponding utterance in
the annotated corpus data. The system consists of a recorded speech signal, a
method for pitch extraction from the speech signal, and a time-aligned
phonemic annotation of the speech signal. The Close Copy procedure can be
manual or automatic [2]; the present study reports on the development of
Automatic Close Copy Speech (ACCS) synthesis.1

3. Requirements for ACCS synthesis

3.1. System requirements

The inputs required by the ACCS synthesis system are as follows:
1. Source speech (source speech recordings) and source DB

(annotated speech database).
2. Speech synthesiser: diphone database (voice), synthesis engine.

The outputs to be produced by the ACCS synthesis system are as
follows:

1. Target pronunciation specification: specification table for input
to speech synthesis engine.
2. Target acoustic output: produced by the speech synthesis

engine.

1The author would like to thank Dafydd Gibbon for advice on ACCS synthesis
system development.

2

Automatic Close Copy Speech Synthesis

3.2. Recordings

A corpus of recordings2 for a male voice was available from a speech
synthesis development scenario. The texts were spoken by a professional
speaker and the recordings were made in a professional recording studio.
The sampling rate of the data in the available format is 16kHz in a standard
WAV format. The texts for use in the synthesiser development consisted
initially of a selection of 1200 sentences from the corpus of approximately
3200 utterances.

3.3. Annotations

Annotation of the recordings at phoneme level was performed
automatically using the software tool CreatSeg [3] and checked by trained
phoneticians. Phonemic segments which were not correctly handled by the
automatic segmentator were manually edited. Additionally, the annotations
also contain prosodic information, based partly on functional judgments and
partly on prosodic information [2], [4].

3.4. Diphone database

The diphone database used in the study is the PL1 MBROLA Polish
female diphone database3 created under the free database access terms of the
MBROLA project [5]. The diphone database consists of 1443 diphones and
contains 37 phonemes in standard Polish SAMPA notation. No Polish male
diphone database is available for MBROLA.

4. MBROLA diphone synthesiser architecture
For ACCS synthesis, the MBROLA diphone synthesis procedure was

adopted, with modifications to the standard architecture, which has the
following structure:

1. Natural Language Processing:
1. Phonetisation: grapheme-to-phoneme conversion.
2. Prosody generation: text parser for duration lookup and

pitch assignment.
2. Pronunciation specification table (PHO file) as NLP-DSP

(Natural Language Processing-Digital Signal Processsing) interface.
3. Speech synthesis component:

1. Diphone database.
2. MBROLA engine.

4. Audio (WAV file) output.

2The author gratefully acknowledges the provision of this corpus by Grażyna
Demenko (Principal Investigator of the Cochlear Implant Evaluation project).

3Created by Krzysztof Szklanny and Krzysztof Marasek, whose work I
gratefully acknowledge.

3

Speech and Language Technology. Volume 9

The NLP component is replaced by an annotation file in which a
transcription and a time stamp are aligned with the speech signal recording.
The annotation and the recording together in principle include all the
information which is needed for generating the specification table interface
to the synthesis engine, which is normally produced by the NLP component.
Consequently, in ACCS synthesis no input text is used. ACCS synthesis
makes use of recordings of real utterances and annotations derived from
these recordings. In the annotation files, phonemes and their durations are
stored. Information about pitch in relation to the phonemes in the annotation
files is extracted from the speech recordings.

5. What is the NLP-DSP interface?
The central component for present purposes is the NLP-DSP interface

which contains the pronunciation specification table produced by a TTS or
CCS component, and used as input by the synthesis engine to synthesise
speech. In MBROLA the NLP-DSP interface is implemented by so-called
PHO files. The format specifies a table with three columns [6]:

1. phonemes that are present in the sound to be produced,

2. duration of these phonemes,

3. pitch values represented by one or more pairs of numbers - the
first number stands for the place of the pitch value in the phoneme,
the second number is the pitch value itself.

The syntax of the specification table ST is defined as a sequence of one
or more vectors SV, each with three components: the phoneme PH, the
phoneme duration PD and the sequence of zero (for voiceless stretches) or
more pitch pairs PP (in the prototype maximally one), consisting of pitch
location PL and the pitch value PV:

<ST> ::= <SV>+

<SV> ::= <PH> <PD> <PP>*
<PP> ::= <PL> <PV>
<PH> ::= sampa_phoneme1 | ... | sampa_phonemen
<PD> ::= millisecond_integer
<PL> ::= pitch_location_percent
<PV> ::= pitch_value_hertz

An illustration of the first five rows of the pronunciation specification
table interface between the NLP and the DSP components is shown in Table
1; this example was derived from the corpus.

4

Automatic Close Copy Speech Synthesis

Table 1: Fragment of Specification Table (ST) for MBROLA PHO file.

PH phoneme
(PL1

SAMPA)

PD phoneme
duration
(msec)

PP pitch pair
PL pitch

location (%)
PV pitch value

(hertz)
n 66 50 200
a 72 50 210
S 82 50 240
tS 45 50 310
e~ 29 50 306

6. Automatic Close Copy Speech synthesis design

6.1. Basic principles of ACCS synthesis

Automatic Close Copy Speech (ACCS) synthesis with an MBROLA
type diphone synthesis is a process of automatically creating pronunciation
specification tables (NLP-DSP interfaces, implemented as PHO files),
making use of recorded and annotated real utterances, and synthesising the
pronunciation specification tables using an appropriate voice (diphone
database). The voice may be created from the annotated utterances, in the
ideal case, or may be an independently created voice, as in the case of the
present study.

The ACCS procedure therefore emulates the Natural Language
Processing front end to a speech synthesis engine. The speech and annotation
information are transformed automatically into a pronunciation specification
table which, together with a diphone database, constitutes the input to the
synthesis engine, which converts the specification table into speech using the
diphone database. The acoustic output is a speech file. Figure 1 shows the
general architecture of the ACCS synthesis system [2].

5

Speech and Language Technology. Volume 9

Figure 1: The architecture of ACCS synthesis
system.

6.2. Components of the ACCS synthesis system

ACCS synthesis is a complex process of converting an annotation file
into a sound file while preserving the pitch pattern which occurs in the
speech file for which the annotation file is made. The components of the
ACCS synthesis system are:

1. Speech information input:
1. speech recordings,
2. time-aligned annotations of speech recordings in BLF

format.
2. Speech synthesiser:

1. diphone database,
2. synthesis engine.

3. Pitch extraction script:
1. BLF to MBROLA PHO format conversion procedure,
2. MBROLA to TextGrid (Praat format) procedure,
3. pitch extraction (calling Praat script),
4. inclusion of pitch values in MBROLA PHO file,
5. synthesis of PHO file with MBROLA engine.

6.3. Mismatches and format preprocessing

The specification table required by the speech synthesis engine when
used with the available Polish diphone database resource differs from the
table provided by the annotated speech resource. This incompatibility has
several components, for which format conversion tools need to be specified.
The incompatibilities are listed in Table 2.

6

Automatic Close Copy Speech Synthesis

Table 2: Polish annotation, diphone database and pronunciation
specification table (NLP-DSP interface) conventions

Polish annotation Diphone
database

NLP-DSP
interface

sample numbers - durations (msec)
positional
allophones

phonemes phonemes

BLF phoneme set PL1 phoneme set PL1 phoneme set
syllable boundaries - -

word boundary
types

- -

pauses pauses pauses
prosodic annotation - -

The missing boundaries and the stress markings are not usable in the
current configuration and are deleted, but will be considered at a later stage
for prosody parametrisation. The SAMPA phoneme set and notation was
given by the available diphone database in the pre-processed input format,
and differs from the phoneme set used in the corpus annotation. The
correspondences are shown in Table 3.

Table 3: Mismatches between BLF and PL1 SAMPA.

BLF SAMPA
annotation

labels

PL1
SAMPA
symbols

BLF SAMPA
annotation

labels

PL1
SAMPA
symbols

p p i i
b b y I
t t e e
d d a a
k k o o
g g u u
c - @ - English

schwa
-

J - - e~
f f - o~
v v m m
s s n n
z z n' n'
S S N N
Z Z l l
s' s' r r

7

Speech and Language Technology. Volume 9

BLF SAMPA
annotation

labels

PL1
SAMPA
symbols

BLF SAMPA
annotation

labels

PL1
SAMPA
symbols

z' z' w w
x x j j

t^s ts w~ -
d^z dz j~ -
t^S tS
d^Z dZ
t^s' ts'
d^z' dz'

A further mismatch occurs between the Polish annotation interface
(BLF) and the NLP-DSP interface (PHO) formats for time specification. The
BLF format includes sample numbers, while the PHO format requires
durations. In order to calculate durations, sampling rate metadata
information (16 kHz) is required. The formula for bridging the gap is
(samplenumberi - samplenumberi-1) / samplingrate.

Perhaps the most crucial mismatch is between the corpus, which is
recorded using a male voice, and the diphone database, which is derived
from a female voice. This requires a pitch re-adjustment. Currently the trivial
formula pitchfemale = 2 * pitchmale is used, but parametrisations with more
complex formulae incorporating a baseline are being developed. In the long
term, an annotated corpus based on a female voice is required, as well as
diphone databases based on male voices.

6.4. ACCS synthesis development procedure overview

The ACCS synthesis requires several conversion steps. The overall
implementation architecture is shown in Figure 2. Since the Praat script for
extracting the pitch values requires a different format (TextGrid), the BLF
sample number and phoneme notation were converted into both MBROLA
PHO format and Praat TextGrid format. The conversion was performed from
the PHO format into TextGrid format, i.e. indirect conversion of BLF into
TextGrid format, because BLF had already been converted into PHO format.

Figure 2 presents the overall ACCS synthesis implementation. The
explanation of the figure is to be found in the following sections.

8

Automatic Close Copy Speech Synthesis

Figure 3 shows the detailed modular structure of the ACCS synthesis
system, which is currently implemented as Perl and Praat scripts.

Figure 3: The architecture of the ACCS system.

9

Figure 2: Detailed schema of Automatic Close Conversion Speech
synthesis (manual integration was later automnatised).

Speech and Language Technology. Volume 9

6.4.1. Automatic BLF phoneme set to Polish Female Voice (the
diphone database) phoneme set conversion

The main problem which appeared in the process of synthesising
speech using the Close Copy Speech synthesis method was that phoneme set
used for annotating recorded utterances (BLF SAMPA annotation phoneme
set) was not the same as the phoneme set used by the diphone database for
the Polish language (PL1 SAMPA phoneme set). Mapping most of the BLF
annotation labels used by the Polish Female Voice (the diphone database)
was not difficult. However, in some cases adapting the phoneme set used for
annotation to the diphone database phoneme set was very tricky. The
problem was caused by [ew~], [ow~], [ej~] and [oj~] sequences of
phonemes in the BLF inventory, because those phonemes were equivalent to
[e~] and [o~] present in the diphone database inventory. The sequences of
phonemes [e] or [o] followed by [w~] or [j~] must be replaced by one
segment [e~] or [o~], depending on the context. Additionally, the duration of
the [e~] or [o~] phoneme was a sum of the durations of [ew~], [ow~], [ej~]
or [oj~].

10

Figure 4: Schema for BLF to PHO conversion..

Automatic Close Copy Speech Synthesis

Figure 4 shows a flow chart for conversion of the BLF SAMPA
annotation phoneme set into the PL1 SAMPA phoneme set and creating
PHO format from a BLF format for single files. The input to the program is
one BLF file. The program reads the first line of the file, makes the
conversion, prints the converted line in PHO format into the PHO file. Then
the program reads another line, makes the conversion, prints the converted
line in PHO format into the PHO file, etc. When all the lines are read,
converted and printed into the PHO file, the PHO file is closed and it can be
later input to MBROLA for synthesising speech. A detailed description of
the algorithm visualised in Figure 4 follows.

1. The program opens a BLF file.
2. The program reads the first line if the file is not empty. The

phoneme from the line is put into the $_ variable.
3. The program checks if $_ is empty.
4. If the $_ variable is empty, it means that either the BLF file is

empty or the program has already read all the lines. Then BLF file is
closed.
5. If the line is not empty, then the program puts the values from

the line into variables, and checks if the variable $eovowel is empty.
6. If the $eovariable is empty, then the program asks if the

variable $_ is equal to the vowel [e] or equal to the vowel [o].
7. If $_ does not contain [e] or [o], then it prints the value of the

$_ variable to the PHO file and reads another line from the BLF file.
8. If $_ contains [e] or [o], then it does not print anything, stores

the value of the $_ variable in the $eovowel variable and reads
another line from the BLF file.
9. Then a new line is read if there is another line, i.e. if all the

lines have not been read already. If there is another line, then the
program checks if the $eovowel variable is empty.
10. If $eovowel is not empty, then it asks if the $_ variable

contains [w~] or [j~].
11. If the $_ contains [w~] or [j~], then [w~] or [j~] is converted

into [e~] or [o~], the duration of the new (current) phoneme is
calculated by adding the duration of the previous phoneme,
$eovowel, and the current phoneme, $_. Then the value of the $_
variable is printed, i.e. [e~] or [o~]. The $eovowel is emptied and the
program reads a new line from the BLF file.
12. If $eovowel is not empty, and the $_ variable does not contain

[w~] or [j~], then the program asks if the value of the $_ variable is
equal to [e] or [o].
13. If $_ is not equal to [e] or [o], then the program treats the

previous vowel [e] or [o] (because $eovowel is not empty) as a
simple vowel and stores the vowel in the $simplevowel variable.
Then the value of the $simplevowel variable is printed, as well as

11

Speech and Language Technology. Volume 9

the phoneme stored in the $_ variable. The $eovowel variable is
emptied and the program reads a new line from the BLF file.
14. If $eovowel is not empty, and the $_ variable is equal to [e] or

[o], then the program knows that the first vowel stored in the
$eovowel variable was a “simple vowel”, puts the value of the
$eovowel variable into a new variable called $simplevowel_first,
prints the value of the $simplevowel_first, empties the $eovowel
variable in order to put the value of the $_ variable in it. Now
$eovowel is equal $_ ([e] or [o]). The current phoneme $_ is not
printed (because it is [e] or [o]). The program reads a new line from
the BLF file. The proces of examining which phoneme follows the
phoneme [e] or [o] in the BLF file repeats, because the $eovowel is
again not empty.
15. If there are no more lines in the BLF file, it means that the $_

variable is empty and all the lines have been read. The BLF file is
closed.
16. Then the program checks if the $eovowel is empty. The

$eovowel variable is not empty if [e] or [o] is the last phoneme in
the BLF file. Because there is no phoneme which follows, the
$eovowel has no chance to be printed while going through the
“$eovowel procedure” - when $_ is not empty, and $eovowel is not
empty. Therefore, the value of the $eovowel variable must be
checked after having read all the lines in the BLF files and closing
the BLF file.
17. If the $eovowel variable is not empty, then the value of the

$eovowel is printed. It is followed by printing the reconstructed final
pause. Because it is not possible to count the duration of the final
pause, the final pause gets the value of 200msec. The PHO file is
closed.
18. If the $eovowel variable is empty, then the reconstructed final

pause is printed into the PHO file and the PHO file is closed.

6.4.2. Which problems connected with the phoneme set
conversion are not solved by the program?

The program does not the deal with two Polish phonemes [c] and [J].
These phonemes are present in the BLF SAMPA annotation phoneme set,
but are not included in the PL1 SAMPA phoneme set. These phonemes are
reconstructed by the sequences of phonemes [kj] or [ki] for the phoneme [c]
and by [gj] or [gi] for the phoneme [J]. The problem is illustrated in Table 4.
The star “*” after the brackets means that the phonemes in the brackets may
or may not appear after the phonemes [c] and [J].

12

Automatic Close Copy Speech Synthesis

Table 4: The phonemes [c] and [J] from the BLF SAMPA annotation
convention and their equivalents in the PL1 diphone database.

BLF SAMPA annotation labels PL1 SAMPA symbols

c (j/i)* k j/i

J (j/i)* g j/i
For the available annotation files, the occurrence of [c] and [J] was

transcribed as [c] followed by [j] or [i] and [J] followed by [j] or [i], creating
sequences of phonemes [cj] and [Jj]. Having these sequences of phonemes, it
is easy to replace the phoneme [c] by the phoneme [k] and the phoneme [J]
by the phoneme [g] without any additional sequential split. If the [c] or [J]
were not followed by [j] or [i], then there would have to be introduced a
proces of splitting the phonemes [c] and [J] into sequences of [kj] or [ki] and
[gj] or [gi], respectively. Then the duration of one phoneme would have to
be split and one part of the value of the duration would have to be given to
the phoneme [k] or [g] and the other part of the duration given to the
phoneme [j] or [i].

It is hoped that all the other annotation files existing in the corpus
transcribe the occurrence of [c] and [J] in the same way, i.e. [c] or [J]
followed by the phoneme [j] or [i]. If there are cases that [c] and [J] are not
followed by the phoneme [j] or [i], then the described above sequential split
will have to be introduced.

To illustrate the problem, different transcriptions of the word “kiedy” is
presented in Table 5:

Table 5: Different transcriptions of the word "kiedy."

BLF notation BLF notation with the
sequential split

procedure needed

PHO notation

c c k

j j

e e e

d d d

y y I

6.4.3. Automatic duration calculation

Calculation of the phoneme durations in milliseconds from the time
stamps with information on the sampling rate was not difficult. But it has to
be stated that in the BLF files the time stamps are marked at the beginning of
the phonemes in the BLF files, therefore the duration of the last segment
cannot be measured. The formula for calculating the duration of phonemes is

(samplenumberi – samplenumberi-1)/samplingrate.

13

Speech and Language Technology. Volume 9

In other words, the sample number from the following phoneme is
subtracted from the sample number on which the program operates currently
and the result of the subtraction is then divided by the sampling rate. This
means that before printing a phoneme from a line, the program must read
another line to calculate the phoneme's duration. To solve the problem, a
variable $_ (Perl standard line variable) which stores the value of the
previous phoneme is introduced. To calculate the duration, the value of the
duration of the previous phoneme must be stored. This problem is also
solved by introducing a variable called sample_1. To be more explicit,

1. the program stores values of the previous line,
2. reads a following line,
3. does the conversion of the phoneme from the previous line,
4. calculates the duration of the phoneme from the previous line

making use of the values of the sample number on the current line,
5. checks if the phoneme from the previous line meets the printing

conditions,
6. if the phoneme from the previous line meets the printing

conditions then this phoneme is printed; if it does not, then another
line is read and the values from the penultimate and previous line are
stored.

6.4.4. Praat pitch extraction

The extraction of pitch is the next step. Copying the phonemes, the
durations of the phonemes from the annotation file and measuring the pitch
values from the original recording of a human utterance allows best case
speech synthesis.

To extract pitch from the recordings a Praat script called max_pitch was
implemented.4 “This script goes through Sound and TextGrid files in a
directory, opens each pair of Sound and TextGrid, calculates the pitch
maximum of each labeled interval, and saves results to a text file” [7].

The implementation of this script caused another problem and some
modifications to the script were made.

The inputs to this script are:
1. WAV files,
2. TextGrid annotation files.

The problem was that the available annotation files were in BLF
format. That fact prompted a design of a new conversion algorithm. The
approach taken was to convert the PHO files with monotone into TextGrid
files. That choice was made, in contrast to converting BLF to TextGrid,
because the script converting BLF phoneme set into the Polish Female Voice
database already existed.

4I am grateful to the author of the Praat script, Mietta Lennes, for this freeware
application, which is distributed under the GNU General Public License.

14

Automatic Close Copy Speech Synthesis

The Praat pitch extraction file produces one TXT file with the pitch
values of all the phonemes in the files in the directory. The output
“pitchresults.txt” file contains following information:

1. filenames of the files in the directory,
2. labels,
3. maximum pitch values of the labeled intervals in Hz.

The pitchresults file for one file in a directory is shown in Figure 5.
Because of the pitchresults format, the automatic integration of the original
pitch values was left untouched at the beginning, creating a new transition
phase in developing the full ACCS synthesis system called Semi-ACCS
synthesis in which data about pitch values were put into the PHO files
manually (cf. Figure 2). This step was later automatised.

Figure 5: Pitchresults file generated by
max_pitch Praat script.

15

Speech and Language Technology. Volume 9

6.4.5. Inclusion of pitch values into MBROLA PHO file

Although at the beginning the extracted pitch values with the use of
max_pitch Praat script were put into the MBROLA PHO files manually in
the procedure called Semi-ACCS synthesis, finally, an automatic inclusion
of pitch values into MBROLA PHO files was developed. This procedure
takes the pitchresults file generated by the modified max_pitch Praat script
as an input. As described above the pitchresults file contains the names of all
the WAV/TextGrid files (the WAV and TextGrid file names are identical)
in a directory, labels and the maximum pitch for segments of these files. The
problem was solved by dividing the pitchresults file into separate PITCH
files in which there are only filenames, labels and pitch values for each file
in a directory. Therefore, the PITCH files got the same length as TextGrid
files. Similarly, PITCH files and MBROLA PHO files were almost identical.
The difference was in the automatically generated first and last pauses in the
PHO files. These pauses were removed by the Perl script and the PITCH and
MBROLA PHO files were made the same length. Finally, the inclusion
script takes:

1. from MRBOLA PHO files with monotone:
1. phonemes,
2. duration of these phonemes,
3. pitch position equal 50.

2.from PITCH files: pitch
values.

Before printing new PHO files, a
simple pitch emulation for the
MBROLA female voice was
introduced: the male pitch values are
multiplied by two, because the
original recordings are for a male
voice and the diphone database is for
a female voice. Furthermore, for
phonemes where pitch value is
undefined (the phonemes are
voiceless), the script prints only
phonemes and duration. The pitch pair
(pitch position and pitch value) are
left out. The automatically generated
PHO file by the ACCS synthesis
script is shown in Figure 6.

Figure 7 shows a waveform and
a pitch contour of a human utterance
Michał podśmiewał się z kolegi, który

16

Figure 6: The automatically
generated PHO file in ACCS

synthesis.

Automatic Close Copy Speech Synthesis

dostał jedynkę ze sprawdzianu (Michał laughed at a pupil who failed a test.)
derived from the corpus. Below there is a waveform and a pitch contour of
the same utterance, but synthesised with the ACCS synthesis procedure.
Comparing both pitch contours there is not a big difference between them,
which indicates that the prosody of the synthesised speech can be very
human-like.

Figure 7: A waveform and a pitch contour of a human utterance and its
synthesised equivalent using the ACCS synthesis.

6.4.6. BLF to TextGrid transformation software

BLF to TextGrid transformation software was developed because
max_pitch script requires annotation files in TextGrid format. Algorithms
converting the set of phonemes used in annotation files into the set of
phonemes used by the Polish Female Voice had already been developed for
creating PHO files. Therefore, in the ACCS speech synthesis system
TextGrid files are made on the basis of PHO files, not the original BLF files.

7. Conclusion and future strategies
In this study, the development of a speech synthesis component for use

in speech perception tests for cochlear implants in children was described
and a prototype implementation was developed. An overview of available
resources was provided. Preliminary diagnostic evaluation of the system was
carried out with successful results. Also informal tests of comprehension of
speech were done with very good results. The next step is to carry out speech

17

Speech and Language Technology. Volume 9

output evaluation tests according to criteria and methods outlined in [8] and
[9].

BIBLIOGRAPHY

[1] Dutoit, T. 1997. An Introduction To Text-To-Speech Synthesis.
Dordrecht: Kluwer Academic Publishers.

[2] Bachan, J. & Gibbon, D. 2006. Close Copy Speech Synthesis for Speech
Perception Testing. In: Investigationes Linguisticae, vol. 13, pp. 9-24.
<http://www.staff.amu.edu.pl/~inveling/pdf/Jolanta_Bachan_Dafydd_
Gibbon_INVE13.pdf>

[3] Demenko, G., Grocholewski, S., Wagner, A. & Szymanski M. 2006.
Prosody annotation for corpus based speech synthesis. In:
Proceedings of the Eleventh Australasian International Conference on
Speech Science and Technology, pp. 460-465. Auckland, New
Zealand.

[4] Gibbon, D., Bachan, J. & Demenko, G. Forthcoming. Syllable timing in
Polish: results from annotation mining.

[5] Szklanny, K. & Masarek, K. 2002. PL1 - A Polish female voice for the
MBROLA synthesizer. Copying the MBROLA Bin and Databases.
<http://tcts.fpms.ac.be/synthesis/mbrola/mbrcopybin.html>, accessed
2006-11-25.

[6] Dutoit, T. 2005. The MBROLA project.
<http://www.tcts.fpms.ac.be/synthesis/mbrola.html>, accessed 2006-
11-30.

[7] Lennes, M. 2003. Praat script – collect_pitch_data_from_files.praat.
<http://www.helsinki.fi/~lennes/praat-
scripts/public/collect_pitch_data_from_files.praat>, accessed 2006-
02-18.

[8] Gibbon, D. & Moore, R. & Winski, R. 1997. Handbook of Standards and
Resources for Spoken Language Systems. Berlin: Mouton de Gruyter.

[9] Gibbon, D. & Mertins, I. & Moore, R. 2000. Handbook of Multimodal
and Spoken Dialogue Systems: Terminology, Resources and Product
Evaluation. New York: Kluwer Academic Publishers.

18

	1. Introduction
	2. Close Copy Speech (CCS) synthesis
	3. Requirements for ACCS synthesis
	3.1. System requirements
	3.2. Recordings
	3.3. Annotations
	3.4. Diphone database

	4. MBROLA diphone synthesiser architecture
	5. What is the NLP-DSP interface?
	6. Automatic Close Copy Speech synthesis design
	6.1. Basic principles of ACCS synthesis
	6.2. Components of the ACCS synthesis system
	6.3. Mismatches and format preprocessing
	6.4. ACCS synthesis development procedure overview
	6.4.1. Automatic BLF phoneme set to Polish Female Voice (the diphone database) phoneme set conversion
	6.4.2. Which problems connected with the phoneme set conversion are not solved by the program?
	6.4.3. Automatic duration calculation
	6.4.4. Praat pitch extraction
	6.4.5. Inclusion of pitch values into MBROLA PHO file
	
	6.4.6. BLF to TextGrid transformation software

	7. Conclusion and future strategies

